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Dependence of frequency of nonlinear cold plasma cylindrical oscillations
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For cold plasma, the frequency of small amplitude Langmuir oscillations along one Cartesian
coordinate i, = \/477e_2n0/me, wheren,=n, is the constant proton density which is equal to the
average electron density. This formula forw, is the basis for measurementsmfin passive and
active radio experiments located on spacecraft. We find that for cold plasma nonlinear cylindrical
osciIIationsn_e>np (i.e., a buildup of negative space charge near the axis of the cylintiee
resulting frequency of oscillations ¢ is greater thanw,,. The relation betweew,, andn, is

found to be logarithmicw,e= w,[ 1 +In(n/ny)/12] with 0.5% accuracy for the range<ing/n,

<6. For quasi-neutral plasma, wheg/n,~1, the logarithmic formula reduces to the linear one:
wpe= 0po[ 11/12+(ng/n;,)/12]. For ng/n,>6, wy. approaches an upper limit oﬁwpo. These
results are expected to be helpful in diagnosticsgin the solar wind and in magnetospheric
plasmas as well as in laboratory plasmas where cylindrical symmetry is prese200©&American
Institute of Physics.[DOI: 10.1063/1.1690299

Cold plasma electrostatic oscillations can be described The same system Eqd)—(3) for cylindrical self-similar
within a single-fluid approximation where the proton densityoscillations can be reduced to a second order nonlinear ordi-
n, is considered to be constant. The corresponding equationsary differential equation for the evolution function(7)

(cgs unitg are the momentum equation (basic equation
8v+ V)v= °E 1 OI2YY\(*lo
the continuity equation where
an =tw,,/\2, 6
(9—te+V~nev=0, 2 pol 2 ©
Ne(7) =Y 2(7)ny, (7)
and Poisson’s equation (1) =y(DYeq, )
V-D=—4me(ne—n,), 3
— YI m (9)
whereD=¢E and e=1. For oscillations along one Cartesian V= 7Y (7) V2 Yedr:
coordinate(plane oscillationg Egs. (1)—(3) have been re-
duced to a single equation for a linear oscillator with Lang- E=21-renp17(Y—Y*1)yeqer. (10

muir frequenc - - _— . .
q y Self-similar cylindrical oscillations which include oscilla-

@po= \/m' (4) tiong of the magngtic field have been studied by the ay‘tf’nors
previously. Equation(5) corresponds to the case without

wheren,= n0=const.1‘5_For plane oscillations, for any am- magnetic field {,;=b=0 in notation of Ref. 12 This
plitude, ne=n,, wheren, is the electron density averaged equation has been derived by a different metfiodtith
over a period of harmonic oscillations. Recent papéren ~ somewhat different notatioffunction p instead ofY). By
nonlinear Langmuir waves contain extensive references teubstitutingX=1+p in Eq. (12) from Ref. 13, one arrives at
work done within kinetic theory. Non-neutral plasmas haveour Eqg.(5).
been studied extensive(gee Refs. 10 and 11 and references  The self-similar parametey is defined as
therein. Eigenmode solutions confirm again that the fre- —rly(t) (11)
guency of the fundamental Langmuir componemt=() in =Y,
the cold plasma limit T.— 0) does not shift from the origi- wherer is the distance from the axis of symmetry in a cy-
nal Langmuir valuew,, for plane geometryformula 18 in  lindrical system of coordinates. At equilibriuny(t)=yeq
Ref. 7). (i.e., Yeg=1). In the solar wind, wherey,,/ ¢ is of the
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order of 100 .. is the electron gyrofrequengyEq. (4) of
Tonks and Langmutris used to finch,. Under the assump-
tionn,=n,, the identification ofw, in the observed spectra
leads to the determination of,, namely,

2
—  WpoMe

e_ .
4re?

12

The validity of this formula for large amplitude cylindrical
oscillations is the subject of our paper. The comparison of
cylindrical, spherical and plane Langmuir oscillations of cold
plasma demonstrated that, in contrast to the plane geometry
case, cylindrical oscillations are inherently nonlinear with
electron frequency . shifted upwards with increase of os-
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cillation amplitude!***In the following, we explore the im-
pact of this nonlinearity on the relation betwegnandw .

Equation (5) is the equation for a nonlinear oscillator

with effective potential
u(Y)=Y?2-InY. (13

Near the minimum ol (i.e., nearYy,=1), we can linearize
Eq. (5). Taking Y=1+AY, where|AY|<1 (see Appendix

and also Ref. 13 we obtain the harmonic oscillator equation

AY"=—2AY, with the nondimensional frequenef2. This
frequency corresponds to the Langmuir frequenagy, ac-

cording to E&(G). Therefore, for small amplitude cylindrical

oscillations,n.=n, and Eq.(12) is valid. However, this is

not true for the large amplitude case. On solving numerically

the basic equatiob) and then averaging.(7), defined by

Eq. (7) over one period of nonlinear oscillations, we have

obtained the dependence @f./w,, 0n n_e/np. This depen-

6103 b)

3103
Aw/wye |

dence is shown in Fig.(ﬁl) by the open points. The continu- FIG. 1. (a) Dependence ob,./w,, 0N normalized average electron density

ous line represents our approximate formula

@pe_, L [Ne
wp0_1+ 12In(no) (14

which fits the numerical solution to within 0.5% over the

range :=n./n,<6. Figure 1b) illustrates the deviation of
the numerical values ab./wp, from formula(14).
For [ng/n,—1|<1, Eq.(14) reduces to

Re_ 4= (15)

ne/n, . Numerical results are presented as open circles. Continuous line
represents approximate logarithmic fit E44). (b) Deviation of analytic
approximation Eq(14) from numerical values oép./w,, for the range of

1<ng/n,<6. A“"E(""pe)analytic_(wpe)numeric-

harmonic potentia¥?/2 with a vertical wall neal =0. Such
a potential has a frequeney= 2w, .** The numerical so-
lution for the weakly nonlinear cage@=0.05,Y’(0)=0] is
shown in Fig. 2. The solutiolY(7) is sinusoidalFig. 2(a)]
and the corresponding phase diagr@m., the dependence of
Y’ onY) is an ellipse[Fig. 2b)]. For this casewye/wp,

For this case of weak nonlinearity, the following formulas =1.000 21 andng/n,=1.00246. By comparison, Edq14)

are true:
Wpe_, 1 5
~ 1+ el (16)
n.
—“=1+a? (17)
nO

where a=Y(0)—Y¢q=Y(0)—1. Formula(16) for the up-

for ng/ny,=1.00246 givesw,e/wp,=1.000204 7 while Eq.
(15 yields wpe/ wpo=1.000 205. For the nonlinear case
=1.5, Y'(0)=0 shown in Figs. @) and 3b), the corre-
sponding solution is not sinusoidal and the corresponding
phase diagram is not ellipsoidal. The exact numerical values
are wpe/ wpo=1.14182,n./n,=5.91093. By comparison,
Eq. (14) yields wpe/ wpo=1.148 07.

Plane Langmuir cold plasma oscillations according to

ward shift of w,e has been derived from the third order ex- Akhiezer and Lyubarskii remain harmonic with the fre-

pansion of the nonlinear force in the basic equat@nnear
the equilibrium pointY.,=1 (see the Appendjx Equation
(15 can also be obtained from Eq¢l6) and (17). For
nJ/n,>6 (i.e.,, a>1), the approximatior(14) is not valid.
For a>1 the effective potentia(13) is equivalent to the

quencyw,, for any amplitude. For such oscillations there is
no buildup of space charge, i.e,=n, wheren, is assumed
to be constanh,=n,. Our work shows this is not the case
for cylindrical oscillations. In this case, in addition to the
upward frequency shifbo,> oy, there is an upward shift
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a) proximation may serve as a guide for further analysis of
1 04 nonlinear cylindrical oscillations within the kinetic approach.
1.0 APPENDIX: WEAKLY NONLINEAR CASE

Y 5 4 6 8 Accordirjg to Ref. 14, the shift in frequenay fqr the
0.98 T weakly ponllnear casa<1 can be calculated analytically by
expanding the force
0.96
F(Y)==Y+Y 1=F(Yeq +F'(YegAY
+ F(Yed AY?+ F'(Yed AY3

2 6

) (A1
in the basic Eq(5) to the third order of amplituddY de-
fined as the deviation from the equilibrium poif,=1:
1.02  1.04 Y=1+AY. (A2)
v The resulting nonlinear oscillator equation in the canonical
form is
AY"+ 02AY=—aAY?— BAYS, (A3)

FIG. 2. (a) Numerical solution of the basic equatidb) for the weakly where
nonlinear case 0d=0.05 (Y,,,=1.05). (b) Phase diagranidependence of
Y’ on) is ellipsoidal. w(%: 2, (A4)

a=—1, (Ab)

of n_e (buildup of negative space chajg&he approximate and

relation kgtweem_e and w, for ne/n,<6 is logarithmic. B=1. (AB)
Thus, forng/n,~6, there is only a 15% increase i, [Fig.
1(a)]. The nonlinear relation between,. and n, reaches a
saturation forng/n,>6, since w,e has an upper limit of Y=Y, +YV+Y@+... (A7)
V2w,." The analytic formulg14) reproduces the numeri-
cally derived curve with an accuracy of 0.5% for the range
1<n/n,<6. These results within the cold plasma fluid ap-where for our cas&,=1, w,=+2, »¥=0, YY=a coswt

According to Ref. 15

w=w,+oP+w@+-- (A8)

and
38 5a?
(2)— — a A9
2.5 3) © (8‘00 12w§) , (A9)
ad’®  aad®
Y =—+ — cos wt. (A10)
1.9 2wg 6bwg
Y
5 2 6 8 Substituting Eqs(A4)—(A6) into Egs.(A9) and (A10), we
w
(2)=_9,2
1) 28 (A11)
b) 2 a’> a’
1.5 Y =72 12°0S 2wt. (A12)
v 05 Therefore Eqs(A7) and (A8) give
a® a2
Y=1+Z+acos<ut—1—zcos 2wt, (A13)
a2
0=12| 1+ ) (A14)

FIG. 3. (a) Numerical solution forma=1.5 is not sinusoidal(b) Phase dia- . L. . .
gram shows substantial deviation from ellipse due to increased level oEquat'on (A14) coincides with Eq-(16) noting that Wo

nonlinearity. =42 corresponds to the normalized Langmuir frequency
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wpo- Equation(A13) gives the explicit relation between am-
plitudes of the fundamentala) and the second harmonic
(a?/12) for weakly nonlinear oscillations in addition to the
shift of Y from unity.
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